"#1 New Release in Artificial Intelligence" (Amazon, April 2023) ... Here is the definitive technical guide to GPT-4 as well as its loquacious counterpart, ChatGPT. Along with step-by-step examples for prompt engineering and fine tuning, the book looks at the current discussions around the technology's promise and peril. Includes a 2-year subscription to GPTAnalytica's PromptBuilder tool. Contents: ============================= 1 Preface 2 A short history of intelligence . . 2.1 What is "intelligence"? . . 2.2 Intelligence and humans . . 2.3 Intelligence and computing . . 2.4 Artificial intelligence . . 2.5 Generative AI . . 2.6 Conversant AI . . 2.7 The Promethean Moment 3 Models and sources . . 3.1 Natural Language Processing (NLP) . . 3.2 Language Modeling (LM) . . 3.3 Pre-GPT Language Models . . 3.4 GPT Language Models . . . . 3.4.1 From data to training set . . . . 3.4.2 Limitations and bias . . 3.5 Common Crawl . . 3.6 WebText data set . . . . 3.6.1 Test set . . 3.7 Wikipedia . . 3.8 Quality of sources 4 GPT-3 . . 4.1 Tokens . . 4.2 Parameters . . 4.3 GPT-3 and ChatGPT 5 GPT-4 6 ChatGPT 7 Using GPT and ChatGPT in OpenAI . . 7.1 Playground . . . . 7.1.1 Mode . . . . 7.1.2 Model . . . . 7.1.3 Temperature . . 7.2 ChatGPT playground . . 7.3 Get your API key . . 7.4 Programmatic use of OpenAI . . . . 7.4.1 Import the openai library . . . . 7.4.2 An example chat API call 8 OpenAI via Python 9 OpenAI via Node.js 10 OpenAI .NET API 11 Prompt engineering . . 11.1 Misunderstanding in human communication . . 11.2 Misunderstanding in ChatGPT . . 11.3 Model capabilities depend on context . . 11.4 How to improve reliability on complex tasks . . . . 11.4.1 Provide quality data . . . . 11.4.2 Check your settings . . . . 11.4.3 Use plain language to describe your inputs and outputs . . . . 11.4.4 Show the API how to respond to any case . . . . 11.4.5 Add context . . . . 11.4.6 Include helpful information up-front . . . . 11.4.7 Give examples . . . . 11.4.8 Length of response . . . . 11.4.9 Define a role . . . . 11.4.10 Be more specific . . . . 11.4.11 Divide a complex task into simpler tasks . . . . 11.4.12 Prompt the model to explain before answering . . . . 11.4.13 Ask for explanations before the answer 12 Fine tuning with a custom dataset . . 12.1 Extract data into a csv file . . 12.2 Check the headers in OpenAI . . 12.3 Playground . . 12.4 Create Prompt and Completion Pairs . . 12.5 Prepare for GPT . . 12.6 Fine-tune a GPT model with your data . . 12.7 Interact with your fine-tuned model 13 Robust fine tuning . . 13.1 Creating a robust, fine-tuned GPT model . . . . 13.1.1 Step 1: Data preparation . . . . 13.1.2 Step 2: Model architecture selection . . . . 13.1.3 Step 3: Model training . . . . 13.1.4 Step 4: Model evaluation 14 Self-taught reasoner 15 Data retrieval plug-in . . 15.1 Plugins . . 15.2 Retrieval Plugin . . 15.3 Memory Feature . . 15.4 Security . . 15.5 API Endpoints . . 15.6 Quickstart 16 Additional techniques . . 16.1 Selection-inference prompting . . 16.2 Faithful reasoning architecture . . 16.3 Least-to-most prompting 17 Act-as prompts 18 Prompt templates 19 Template libraries 20 Prompt generators 21 GPTAnalytica PromptBuilder (user guide)
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.