Skip to content
Scan a barcode
Scan
Paperback Statistical Pattern Recognition Book

ISBN: 0470682280

ISBN13: 9780470682289

Statistical Pattern Recognition

Select Format

Select Condition ThriftBooks Help Icon

Recommended

Format: Paperback

Condition: New

$81.41
Save $4.54!
List Price $85.95
50 Available
Ships within 2-3 days

Book Overview

Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions. It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques.

This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book has been updated to cover new methods and applications, and includes a wide range of techniques such as Bayesian methods, neural networks, support vector machines, feature selection and feature reduction techniques.Technical descriptions and motivations are provided, and the techniques are illustrated using real examples.

Statistical Pattern Recognition, 3rd Edition:

Provides a self-contained introduction to statistical pattern recognition. Includes new material presenting the analysis of complex networks. Introduces readers to methods for Bayesian density estimation. Presents descriptions of new applications in biometrics, security, finance and condition monitoring. Provides descriptions and guidance for implementing techniques, which will be invaluable to software engineers and developers seeking to develop real applications Describes mathematically the range of statistical pattern recognition techniques. Presents a variety of exercises including more extensive computer projects.

The in-depth technical descriptions make the book suitable for senior undergraduate and graduate students in statistics, computer science and engineering. Statistical Pattern Recognition is also an excellent reference source for technical professionals. Chapters have been arranged to facilitate implementation of the techniques by software engineers and developers in non-statistical engineering fields.

http: //www.wiley.com/go/statistical_pattern_recognition

Customer Reviews

2 ratings

The most comprehensive book about machine learning

The book written by Andrew Webb is certainly the most comprehensive book related to machine learning. I have not been able to find any machine learning topic which is not treated in this book. According to me, this book is more for a scientific audience for the simplest reason that the presentation gives more importance to equations than to application examples. It does not explain how to program machine learning algorithm but rather which algorithms exist and what is their mathematical background. Every technique is presented first using text and only then mathematical development is shown. Therefore, it is convenient for people preferring textual description as well as the ones preferring equations. The book is very well structured. Every chapter starts with a textual introduction on the related issue and then describes several techniques to solve it. At the end, specific application examples are given. A large part is then devoted to summary, discussion, recommendations (not always), notes and references, and finally exercises. Topics are covered in a non standard way for people used to data mining practical books. After an introduction, density estimation techniques are explained. Then linear and non-linear discriminant analyzes. It goes on with decision trees, performance and feature selection to finish with clustering and some other additional topics. Although this book is written in a statistical point of view, it is certainly one of the most comprehensive resource for machine learning and data mining.

This book is good guidance.

I recently started study about Pattern Recognition. This book is so well organized. - Introduction to statistical pattern recognition- Basic approaches to supervised classification via Bayes' rule and estimation of the class-conditional densities.- Discriminant function approach to supervised classification.- Techniques of exploratory data analysis.- Additional topics on pattern recognition including performance assessment.Especially, this book contains URL which concerned with topics. It is very useful!!
Copyright © 2026 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks® and the ThriftBooks® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured