I Hydrological Data Assimilation
1 Introduction
1.1 Hydrologic modelling, challenges and opportunities
1.2 Data assimilation
1.3 Hydrological data assimilation
2 Data assimilation and remote sensing data
2.1 Satellite remote sensing, new opportunities
2.2 Satellite data assimilation challenges
II Model-Data 14
3 Hydrologic model
3.1 Background
3.2 Forcing observations
4 Remote sensing for assimilation
III Data Assimilation Filters
5 Sequential Data Assimilation Techniques for Data Assimilation5.1 Summary
5.2 Introduction
5.3 Model and Datasets
5.3.1 W3RA
5.3.2 GRACE-derived Terrestrial Water Storage
5.3.3 In-situ data5.4 Filtering Methods and Implementation
5.4.1 Stochastic Ensemble Kalman Filter (EnKF)
5.4.2 Deterministic Ensemble Kalman Filters
5.4.3 Particle Filtering
5.4.4 Filter Implementation
5.5 Results
5.5.1 Assessment with GRACE and in-situ data
5.5.2 Error Analysis
5.6 Summary and Conclusions
IV GRACE Data Assimilation6 Efficient Assimilation of GRACE TWS into Hydrological Models
6.1 Summary
6.2 Introduction
6.3 Datasets
6.3.1 GRACE
6.3.2 W3RA
6.3.3 Validation Data