Chap. 1 - Introduction.-
Part I - Theoretical Foundations.-
Chap. 2 - Uncertainty Decoding and Conditional Bayesian Estimation.- Chap. 3 - Uncertainty Propagation.-
Part II - Applications.-
Chap. 4 - Front-End, Back-End, and Hybrid Techniques for Noise-Robust Speech Recognition.- Chap. 5 - Model-Based Approaches to Handling Uncertainty.- Chap. 6 - Reconstructing Noise-Corrupted Spectrographic Components for Robust Speech Recognition.- Chap. 7 - Automatic Speech Recognition Using Missing Data Techniques: Handling of Real-World Data.- Chap. 8 - Conditional Bayesian Estimation Employing a Phase-Sensitive Estimation Model for Noise-Robust Speech Recognition.-
Part III - Reverberation Robustness.-
Chap. 9 - Variance Compensation for Recognition of Reverberant Speech with Dereverberation Processing.- Chap. 10 - A Model-Based Approach to Joint Compensation of Noise and Reverberation for Speech Recognition.-
Part IV - Applications: Multiple Speakers and Modalities.-
Chap. 11 - Evidence Modelling for Missing Data Speech Recognition Using Small Microphone Arrays.- Chap. 12 - Recognition of Multiple Speech Sources Using ICA.- Chap. 13 - Use of Missing and Unreliable Data for Audiovisual Speech Recognition.-
Index.