This two‐volume Element reconstructs and analyzes the historical debates on whether renormalized quantum field theory is a mathematically consistent theory. This volume covers the years the years immediately following the development of renormalized quantum electrodynamics. It begins with the realization that perturbation theory cannot serve as the foundation for a proof of consistency, due to the non-convergence of the perturbation series. Various attempts at a nonperturbative formulation of quantum field theory are discussed, including the Schwinger-Dyson equations, GunnarK ll n's nonperturbative renormalization, the renormalization group of MurrayGell-Mann and Francis Low, and, in the last section, early axiomatic quantum field theory. The second volume of this Element covers the establishment of Haag's theorem, which proved that even the Hilbert space of perturbation theory is an inadequate foundation for a consistent theory. This title is also available as Open Access on Cambridge Core.
ThriftBooks sells millions of used books at the lowest
everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We
deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15.
ThriftBooks.com. Read more. Spend less.