A control-volume based finite difference computation of a turbulent transonic flow over an axisymmetric curved hill is presented. The numerical method is based on the SIMPLE algorithm, and hence the conservation of mass equation is replaced by a pressure correction equation for compressible flows. The turbulence is described by a k-epsilon turbulence model supplemented by a near-wall turbulence model. In the method, the dissipation rate in the region very close to the wall is obtained from an algebraic equation and that for the rest of the flow domain is obtained by solving a partial differential equation for the dissipation rate. The other flow equations are integrated up to the wall. It is shown that the present turbulence model yields the correct location of the compression shock. The other computational results are also in good agreement with experimental data. Kim, S.-W. Glenn Research Center NASA ORDER C-99066-G; RTOP 505-62-21...
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.