A key step for some methods dealing with the reconstruction of a function with jump discontinuities is the accurate approximation of the jumps and their locations. Various methods have been suggested in the literature to obtain this valuable information. In the present paper, we develop an algorithm based on identities which determine the jumps of a 2(pi)-periodic bounded not-too-highly oscillating function by the partial sums of its differentiated Fourier series. The algorithm enables one to approximate the locations of discontinuities and the magnitudes of jumps of a bounded function. We study the accuracy of approximation and establish asymptotic expansions for the approximations of a 27(pi)-periodic piecewise smooth function with one discontinuity. By an appropriate linear combination, obtained via derivatives of different order, we significantly improve the accuracy. Next, we use Richardson's extrapolation method to enhance the accuracy even more. For a function with multiple discontinuities we establish simple formulae which "eliminate" all discontinuities of the function but one. Then we treat the function as if it had one singularity following the method described above. Kvernadze, George and Hagstrom, Thomas and Shapiro, Henry Glenn Research Center NAG3-2014; NSF DMS-93-04406; NSF DMS-96-00146; RTOP 538-03-11
ThriftBooks sells millions of used books at the lowest
everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We
deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15.
ThriftBooks.com. Read more. Spend less.