Skip to content
Scan a barcode
Scan
Paperback Local Dynamics of Non-Invertible Maps Near Normal Surface Singularities (Memoirs of the American Mathematical Society, 272) Book

ISBN: 1470449587

ISBN13: 9781470449582

Local Dynamics of Non-Invertible Maps Near Normal Surface Singularities (Memoirs of the American Mathematical Society, 272)

We study the problem of finding algebraically stable models for non-invertible holomorphic fixed point germs f : (X, x0) --> (X, x0), where X is a complex surface having x0 as a normal singularity. We prove that as long as x0 is not a cusp singularity of X, then it is possible to find arbitrarily high modifications ?: X? --> (X, x0) such that the dynamics of f (or more precisely of fN for N big enough) on X? is algebraically stable. This result is proved by understanding the dynamics induced by f on a space of valuations associated to X; in fact, we are able to give a strong classification of all the possible dynamical behaviors of f on this valuation space. We also deduce a precise description of the behavior of the sequence of attraction rates for the iterates of f . Finally, we prove that in this setting the first dynamical degree is always a quadratic integer.

Recommended

Format: Paperback

Temporarily Unavailable

We receive fewer than 1 copy every 6 months.

Related Subjects

Math Mathematics Science & Math

Customer Reviews

0 rating
Copyright © 2025 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks ® and the ThriftBooks ® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured