Learning to perform complex action strategies is an important problem in the fields of artificial intelligence, robotics and machine learning. Presenting interesting, new experimental results, Learning in Embedded Systems explores algorithms that learn efficiently from trial and error experience with an external world. The text is a detailed exploration of the problem of learning action strategies in the context of designing embedded systems that adapt their behaviour to a complex, changing environment. Such systems include mobile robots, factory process controllers and long-term software databases.
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.