The current paper reports on numerical investigations on the flow characteristics in a transonic axial compressor, NASA Rotor 37. The flow field was used previously as a CFD blind test case conducted by American Society of Mechanical Engineers in 1994. Since the CFD blind-test exercise, many numerical studies on the flow field in the NASA Rotor 37 have been reported. Although steady improvements have been reported in both numerical procedure and turbulence closure, it is believed that all the important aspects of the flow field have not been fully explained with numerical studies based on the Reynolds Averaged Navier-Stokes (RANS) solution. Experimental data show large dip in total pressure distribution near the hub at downstream of the rotor at 100% rotor speed. Most original numerical solutions from the blind test exercise did not predict this total pressure deficit correctly. This total pressure deficit at the rotor exit was attributed to a hub corner flow separation by the author. Several subsequent numerical studies with different turbulence closure model also calculated this dip in total pressure rise. Also, several studies attributed this total pressure deficit to a small leakage flow coming from the hub in the test article. As the experimental study cannot be repeated, either explanation cannot be validated. The primary purpose of the current investigation is to investigate the transonic flow field with both RANS and a Large Eddy Simulation (LES). The RANS approach gives similar results presented at the original blind test exercise. Although the RANS calculates higher overall total pressure rise, the total pressure deficit near the hub is calculated correctly. The numerical solution shows that the total pressure deficit is due to a hub corner flow separation. The calculated pressure rise from the LES agrees better with the measured total pressure rise especially near the casing area where the passage shock interacts with the tip clearance vortex and flow bec
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.