This thesis addresses the figure-ground segmentation problem in the context of complex systems for automatic object recognition. Firstly the problem of image segmentation in general terms is introduced, followed by a discussion about its importance for online and interactive acquisition of visual representations. Secondly a machine learning approach using artificial neural networks is presented. This approach on the basis of Generalized Learning Vector Quantization is investigated in challenging scenarios such as the real-time figure-ground segmentation of complex shaped objects under continuously changing environment conditions. The ability to fulfill these requirements characterize the novelty of the approach compared to state-of-the-art methods. Finally the proposed technique is extended in several aspects, which yields a framework for object segmentation that is applicable to improve current systems for visual object learning and recognition.
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.