One of the most useful tools for studying hyperbolic 3-manifolds is the technique of ideal triangulations, introduced by Thurston to understand the hyperbolic structure of the complement of the figure-eight knot. If a 3-manifold is equipped with an ideal triangulation, one tries to construct a hyperbolic structure on the manifold by defining the structure on each tetrahedron and then by requiring global compatibility. Straight hyperbolic ideal tetrahedra are parameterized by complex numbers with positive imaginary part, and compatibility translates into algebraic equations in the parameters. In most of this work we consider generalized solutions of the compatibility equations, without restrictions on the imaginary part, and we investigate which such solutions define a global structure. We begin by facing, and essentially solving in full generality, the analogous two-dimensional Euclidean problem. We then study explicit examples of cusped 3-manifold, exhibiting a variety of different phenomena. Finally, we introduce a certain notion of geometric solution, we prove existence and uniqueness results for such solutions, and we characterize them in terms of the volume of their (suitably defined) holonomy. The last part of the thesis is devoted to the study of the volume function on the character variety of a hyperbolic 3-manifold. Our main result here is the proof of a rigidity theorem for representations of maximal volume.
Format:Paperback
Language:English
ISBN:887642167X
ISBN13:9788876421679
Release Date:October 2005
Publisher:Edizioni Della Normale
Length:136 Pages
Weight:0.65 lbs.
Dimensions:0.6" x 5.8" x 9.4"
Recommended
Format: Paperback
Condition: New
$19.22
On Backorder
If the item is not restocked at the end of 90 days, we will cancel your backorder and issue you a refund.
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.