Thermals caused by convection in the lower atmosphere are commonly used by birds and glider pilots to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited Aerial Vehicles (UAVs) can also increase performance and reduce energy consumption by exploiting atmospheric convection. An autonomous soaring research project was conducted at the NASA Dryden Flight Research Center to evaluate the concept through flight test of an electric-powered motor-glider with a wingspan of 4.27 m (14 ft). The UAV's commercial autopilot software was modified to include outer-loop soaring guidance and control. The aircraft total energy state was used to detect and soar within thermals. Estimated thermal size and position were used to calculate guidance commands for soaring flight. Results from a total of 23 thermal encounters show good performance of the guidance and control algorithms to autonomously detect and exploit thermals. The UAV had an average climb of 172 m (567 ft) during these encounters. Allen, Michael J. Armstrong Flight Research Center NASA/TM-2007-214611, H-2682 SOARING; FLIGHT TESTS; AIR CURRENTS; AUTOMATIC PILOTS; AUTONOMY; CLIMBING FLIGHT; CONVECTION CURRENTS; PILOTLESS AIRCRAFT; ENERGY CONSUMPTION; ESTIMATING; CONSERVATION
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.