Preface. Acknowledgements. 1 Basic Properties of Electric Fields in Composite Dielectrics. 1.1 Background. 1.2 Fundamentals of Composite Dielectric Fields. 1.3 Effect of Conduction. 1.4 Outline of Field Behavior near a Contact Point. 1.5 Outline of the Chapters. References. 2 Electric Field Behavior for a Finite Contact Angle. Introduction. 2.1 Analytical Treatment. 2.2 Numerical Treatment. 2.3 Effect of Volume and Surface Conduction. References. 3 Electric Field for a Zero Contact Angle (Smooth Contact). Introduction. 3.1 Stressed Conductor in Contact with a Solid Dielectric. 3.2 Uncharged Spherical Conductor Under a Uniform Field. 3.3 Stressed Conductor on a Solid Dielectric of Finite Thickness. 3.4 Other Basic Configurations. 3.5 Effect of Volume and Surface Conduction. References. 4 Electric Field Behavior for the Common Contact of Three Dielectrics Introduction. 4.1 Contact of Straight Dielectric Interfaces. 4.2 Perpendicular Contact of a Solid Dielectric with another Solid. 4.3 Numerical Analysis of Field Behavior. References. 5 Electric Field in High-Voltage Equipment. Introduction. 5.1 Finite Contact Angle: Prevention of Field Singularity near a Contact Point. 5.2 Zero Contact Angle in Gas-Insulated Equipment. 5.3 Common Contact of Three Dielectrics. 5.4 Application to High-Field-Emission Devices. References. 6 Electric Field and Force in Electrorheological Fluid: a System of Multiple Particles. Introduction. 6.1 Equivalent Dipole Expression. 6.2 Particles Lined Up Parallel to an Applied Field. 6.3 Particle Chain Tilted to the Field Direction. 6.4 Two-Particle Chain Between Parallel Plane Electrodes with the Minimum Separation. 6.5 Nonhomogeneous Particles. References. 7 Electric Field and Force on Toners in Electrophotography. Introduction. 7.1 Fundamental Characteristics. 7.2 Charged Dielectric Particle on a Conductor. 7.3 Charged Dielectric Particle on a Dielectric Barrier. References. 8 Analytical Calculation Methods.Introduction. 8.1 Variable-Separation Method for Straight Dielectric Interfaces. 8.2 Iterative Image Charge Method. 8.3 Uncharged Conducting Sphere Under a Uniform Field on a Dielectric Plane. 8.4 Re-expansion Method for a System of Particles. References. 9 Numerical Calculation Methods. Introduction. 9.1 General Remarks. 9.2 Charge Simulation Method (CSM). 9.3 Surface Charge Method (SCM). 9.4 Boundary Element Method (BEM). References. Index.
ThriftBooks sells millions of used books at the lowest
everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We
deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15.
ThriftBooks.com. Read more. Spend less.