This research aims to obtain accurate and stable estimates of a vehicle's attitude by coupling consumer-grade inertial and optical sensors. This goal is pursued by first modeling both inertial and optical sensors and then developing a technique for identifying vanishing points in perspective images of a structured environment. The inertial and optical processes are then coupled to enable each one to aid the other. The vanishing point measurements are combined with the inertial data in an extended Kalman filter to produce overall attitude estimates. This technique is experimentally demonstrated in an indoor corridor setting using a motion profile designed to simulate flight. Through comparison with a tactical-grade inertial sensor, the combined consumer-grade inertial and optical data are shown to produce a stable attitude solution accurate to within 1.5 degrees. A measurement bias is manifested which degrades the accuracy by up to another 2.5 degrees.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.