Il riconoscimento del volto svolge un ruolo importante nell'identificazione personale basata sulla biometria. La tecnica di riconoscimento biometrico funge da metodo efficiente e trova ampie applicazioni nell'ambito del reperimento di informazioni, delle operazioni bancarie automatiche, del controllo degli accessi alle aree di sicurezza e cos via. Il metodo proposto si basa sull'analisi delle componenti principali (PCA) dell'immagine con una combinazione di dettagli DWT. Questo approccio riduce i requisiti di memorizzazione e il tempo di calcolo, preservando i dati. Lo schema proposto sfrutta le capacit di estrazione delle caratteristiche della Decomposizione della Trasformata Wavelet Discreta e ricorre ad alcune tecniche di normalizzazione che ne aumentano la robustezza alle variazioni della geometria e dell'illuminazione del volto. Tradizionalmente, per rappresentare il volto umano, la PCA viene eseguita sull'intera immagine del viso. La rete neurale e il classificatore K-NN vengono utilizzati per classificare le caratteristiche e la misura della somiglianza viene effettuata mediante la distanza euclidea. I risultati sperimentali dimostrano che il metodo proposto efficace e possiede diverse propriet desiderabili se confrontato con molti algoritmi esistenti. L'approccio PCA-DWT-ICA-ibrido stato valutato su MATLAB utilizzando il database dei volti di Yale.
ThriftBooks sells millions of used books at the lowest everyday prices. We personally assess every book's quality and offer rare, out-of-print treasures. We deliver the joy of reading in recyclable packaging with free standard shipping on US orders over $15. ThriftBooks.com. Read more. Spend less.