The purpose of the algorithm developed in this thesis was to create a post processing method that could resolve objects at low signal levels using polarization diversity and no knowledge of the atmospheric seeing conditions. The process uses a two-channel system, one unpolarized image and one polarized image, in a GEM algorithm to reconstruct the object. Long exposure images were simulated and a smile Kolmogorov model used. This allowed for the atmosphere to be characterized by single parameter, the Fried Parameter. Introducing a novel polarization prior that restricts the polarization parameter, it was possible to determine the Fried Parameter to within half a centimeter without any addition knowledge or processes. It was also found that when a high polarization diversity was present in the image could be reconstructed with significantly better resolution and signal level did not affect this resolving capability. At very low signal levels, imagery with low to no diversity could not be resolved at all whereas high diversity resolved equally as well as if there was a high signal level.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.