Skip to content
Scan a barcode
Scan
Paperback Analytical and Experimental Studies of a Short Compact Subsonic Diffuser for a Two-Dimensional Supersonic Inlet Book

ISBN: 1730729843

ISBN13: 9781730729843

Analytical and Experimental Studies of a Short Compact Subsonic Diffuser for a Two-Dimensional Supersonic Inlet

An experimental study of a two-dimensional supersonic inlet with a short compact subsonic diffuser, length to exit diameter (dl/d) ratio of 1.25, was conducted to investigate the impact of the short diffuser on inlet performance at low speeds and to assess the diffuser subsonic performance for a simulated diffuser flow corresponding to high-speed inlet conditions near the design flight Mach number of 2.2. For the low-speed testing, a drooped lip was employed to improve the inlet performance at a high angle of attack. For the simulated high-speed testing, air was blown through slots or discrete nozzles as an active boundary-layer control. The results from the low-speed performance test were compared with the results from a previous test program on the same inlet with a long subsonic diffuser (dl/d = 4.5). The comparison indicates that inlet recovery was not affected by the use of the short diffuser for either the baseline (no droop) or the drooped cowl lip configuration. However, the inlet baseline distortion for the short diffuser configuration was substantially higher than for the long diffuser. A comparison of the two configurations with a 70 deg drooped lip showed no significant difference in distortion. For the portion of the experimental program in which diffuser conditions for high-speed flight were simulated, diffuser-induced flow separation occurred. This separation was predicted from an analytical study that used the Hess potential flow panel method and the Herring two-dimensional boundary-layer analysis computer codes. The flow separated mainly on the diffuser ramp. Subsequent tests in which boundary-control systems were utilized showed that blowing with either slots or discrete nozzles could suppress the flow separation in the short subsonic diffuser, thereby substantially improving the diffuser performance. Iek, Chanthy and Burley, Richard R. and Johns, Albert L. Glenn Research Center...

Recommended

Format: Paperback

Temporarily Unavailable

We receive fewer than 1 copy every 6 months.

Customer Reviews

0 rating
Copyright © 2025 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks ® and the ThriftBooks ® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured