Skip to content
Scan a barcode
Scan
Paperback Aliquot Cycles for Elliptic Curves with Complex Multiplication Book

ISBN: 1483902323

ISBN13: 9781483902326

Aliquot Cycles for Elliptic Curves with Complex Multiplication

We review the history of elliptic curves and show that it is possible to form a group law using the points on an elliptic curve over some field L. We review various methods for computing the order of this group when L is finite, including the complex multiplication method. We then define and examine the properties of elliptic pairs, lists, and cycles, which are related to the notions of amicable pairs and aliquot cycles for elliptic curves, defined by Silverman and Stange. We then use the properties of elliptic pairs to prove that aliquot cycles of length greater than two exist for elliptic curves with complex multiplication, contrary to an assertion of Silverman and Stange, proving that such cycles only occur for elliptic curves of j-invariant equal to zero, and they always have length six. We explore the connection between elliptic pairs and several other conjectures, and propose limitations on the lengths of elliptic lists.

Recommended

Format: Paperback

Condition: New

$10.64
50 Available
Ships within 2-3 days

Related Subjects

Math Mathematics Science & Math

Customer Reviews

0 rating
Copyright © 2026 Thriftbooks.com Terms of Use | Privacy Policy | Do Not Sell/Share My Personal Information | Cookie Policy | Cookie Preferences | Accessibility Statement
ThriftBooks® and the ThriftBooks® logo are registered trademarks of Thrift Books Global, LLC
GoDaddy Verified and Secured